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Abstract—Cyber deception provides a proactive cyber defense
that can reverse the asymmetry in cyber warfare through con-
fusing, misleading, or diverting attackers to false goals. However,
developing and deploying adaptive cyber deception techniques in
real-life operational networks is an extremely complex and time-
consuming task due to the extensive efforts required to implement
the underlying network infrastructure configuration functions
that are necessary to support active cyber deception operations,
including observing, planning, and deploying honey resources
at real-time. Therefore, developers in this field often spend
significant time and effort building such infrastructural functions
rather than focusing on developing sophisticated strategies for
cyber deception applications.

In this paper, we developed an active cyber deception frame-
work (ADF) that provides an extensible rich API and synthesis
engine for developing advanced cyber deception applications. The
API can be used to observe adversary actions, compose multi-
strategy deception plans, and ensure safe yet quick deployment
of deception plans by automatically managing the network
configuration and operational tasks. In addition, ADF provides
deception as a service by automatic orchestration of deception
planning and deployment with minimal human involvement. We
implemented our deception framework using the OpenDaylight
Software-defined networking controller. We evaluated ADF using
various case studies that demonstrate the rapid and cost-effective
deployment of advanced application of active deception on real
networks within a few seconds.

Index Terms—Cyber Deception, SDN

I. INTRODUCTION

In modern cyber warfare, the prevalence of cyber asymme-
try between the adversary and the defender is that the defender
needs to protect all susceptibilities into the infrastructure. In
contrast, the adversary requires one vulnerability to exploit.
Existing reactive cyber defense techniques response after the
attack has been launched and usually approaches the target
for specific, known attack descriptions or signatures [1]. This
often lets the adversary remain stealthy enough to learn the
system and discover further vulnerabilities and possible lateral
movement. In addition, skilled attackers can easily avoid
static signature-based detection through exhaustive reconnais-
sance, fingerprinting, and social engineering [2]. Therefore,
a proactive approach must be used by defenders to break

this asymmetry. Cyber deception is a promising technology
to achieve this goal.

Cyber Deception is an intentional misrepresentation of
real systems’ ground truth to manipulate adversary’s course
of actions under the premises of the defenders’ rules [3].
However, the goal of cyber deception is beyond just to mislead
adversaries. Cyber deception can deflect adversary away from
their target to false or no target, distort their perception of
the infrastructure by adding ambiguity and decoys into the
network. Deception can deplete adversary consuming their
computational power, delaying attack propagation by storming
the static ground truth to a probabilistic state, for instance,
increasing the number of probing by mutating the static IP
addresses of critical resources. Finally, deception can engage
with the adversaries to stir down under defenders’ premises
to discover their hidden tactics and techniques, which leads
the defender to protect future zero-day attacks. In summary,
deception is a rising paradigm in cyber defense that works
beyond traditional detect-then-prevent techniques while effec-
tively discovering new adversary tactics, consuming their re-
sources, slowing down attack propagation, and learn adversary
intention for future defense.

The current state of art depicts the increasing adoption
rate of cyber deception because of its evident success over
the existing reactive defense [2]–[9]. By 2022, it is expected
that the global cyber deception market’s expense will grow
up to $2.3 billion [10]. However, developing cyber deception
techniques in real networks is a highly complex task. It
requires significant effort in implementation and network con-
figuration management. Efficient and adaptive cyber deception
needs continuous network monitoring to observe adversary
activities, optimal planning for feasible implementation, and
safe deployment without breaking the integrity of the system.
As a result, few deception frameworks are developed and
validated in the real-life operational environment.

To overcome these challenges, we develop an Active De-
ception Framework (ADF) that has extensible rich API to
build sophisticated cyber deception applications. The goal of
ADF is to make deception infrastructure as services through
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Fig. 1: Adversary adaptive deception deployment strategy.

API that shields deception architects from all intricate details
about the low-level deception primitives implementation, or-
chestration and deployment, which eventually block them from
developing novel and innovative deception applications. ADF
provides an open environment for developing deception by 1)
an extensible API that allows developers to build advanced
deception application, 2) a decision-making synthesis engine
(solver), that has satisfiability modulo theories (SMT) [11] for
optimal correct by construction planning, ConfigChecker [12]
for verification (reachability) analysis, etc., and 3) a controller
for automated orchestration and dynamic composition of risk-
aware deception planning deployment.

The ADF API creates a new dimension to make cyber
deception as a service. It is extensible and available on GitHub;
therefore, more functions can be added by the community
based on requirements. The high-level deception planning API
specifies the HoneyThings (honeypots, decoys, etc.) [3] con-
figuration parameters and misrepresentation mechanisms of
the system. While deployment, these parameter configurations
can be done by low-level network management API. Thus,
ADF has a comprehensive low-level network management
API. The high-level deception planning API and low-level
network configuration API make ADF an easy to develop
multi-strategy deception planning and deployment in a timely
and economical fashion.

We developed ADF over Software-defined networking
(SDN). SDN provides a programmable environment over
network configuration management through a centralized con-
troller that enables comprehensive diagnosis of observations
and quick deception action response. ADF supports a high-
level deception API over the OpenDaylight [13] controller
and a low-level network management API over OpenFlow
protocol [14]. The framework has sensors to monitor adver-
sary actions. ADF incorporates solvers such as SMT [11],
ConfigChecker [12], etc., to optimize deception planning. We
studied various deception planning deployments with different
defense goals in real SDN testbed, showing the use case of
ADF. Our evaluation results show that ADF can ensure proac-
tive cyber deception by deploying multi-strategy deception
policies within a few seconds.

II. ACTIVE DECEPTION ARCHITECTURE

ADF achieves adversary adaptive dynamic deception
through multiple processes shown in figure 1. ADF has a set
of sensors shown in table I, that observe adversary actions

TABLE I: ADF sensors, management and constraint API.

Sensor API Management API Constraints API
isHostScanning() block() getRouteRisk()
isLinkFlooding() inspect() overlap()
chekTrafficRate() throttling() isIncludeSwitch()
checkElephantTCP() splitInspect() getAvailableBandWidth()
getFlowStatistics() priorityForwarding() checkUniqueIP()
checkNewComers() installFlowRule() checkNonRepeateIP()
getCriticalLinks() installNetworkPath() checkSpatialCollision()
getAllFlowRules() sendPacketOut() getMinDetectionProb()
findNeighbors() createTunnel() getAttackUncertainity()
detectBot() subscribeEvent() canReach()
getPortID() removeAllFlows() getShortestPath()
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Fig. 2: Active deception framework.

to analyze the attack behavior, capabilities, and predict its
intention. The sensors collect these sense-making observations
from cyber resources such as host machines, IP addresses, OS,
services, switches, links, and more. Using the sensors’ report,
the decision-making process deduces the current deception
goals from deflection, depletion, distortion, or discovery. Then,
in the planning process, an optimal set of defensive actions has
been chosen to deploy.

ADF leverages multi-strategy deception planning solutions
such as SMT, ConfigChecker, etc. to select the deception
action policy optimally. These deception actions strategically
change the low-level network or system configuration of
the HoneyThings, e.g., decoy host creation, redirect traffic
to proxy/decoy, IP mutation, a mix of true-false response
generation for scanning request, etc. Finally, ADF deploys
the deception policy into the network. The sensors observe
the adversary response against the activated deception actions.
The adversary may get engaged with the deception and run
under the rule of the defender. However, he/she can detect
the deception and adapt its technique as well. But in either
case, the ADF sensor reports the current observation to plan
new deception tactics. Therefore, ADF provides an adversary
adaptive dynamic deception framework that is proactive, ro-
bust, and swift in deployment.

III. ACTIVE DECEPTION FRAMEWORK

Figure 2 shows the major components of ADF: the user
interface to initiate cyber deception and the active deception



class ActiveDeceptionApiHandler:
def event_generator(self, request):
...

deception_event = EventBuilderFactory
.build(request)

output = ActiveDeceptionServiceImpl
.defenseByDeception(deception_event)

Listing 1: Middleware generates the OpenDaylight API decep-
tion event from user input (Python implementation).

public class ActiveDeceptionServiceImpl implements
ActiveDeceptionService
...
public Future<RpcResult<DefenseByDeceptionOutput>>

defenseByDeception(DefenseByDeceptionInput input){
...
DeceptionPlan optimalConfiguration =

Solver.solve(input.getConstraints())
Future<RpcResult<CreateHoneyNetworkOutput>> status

= createHoneyNetwork(optimalConfiguration);

Listing 2: The deception controller solves optimal deception
planning configuration to create honey network (OpenDaylight
implementation).

controller to deploy the deception along with the OpenDay-
light controller over the SDN network.

A. Interface

The ADF interface provides an easy way to play with the
deception API (ADF API) to build highly complex deception
planning. For instance, the admin wants to initiate deception
to proactively protect critical resources into the network while
also wants to learn the network behavior for any future attacks.
Therefore, she starts a multi-strategy deception technique,
such as distort adversary, by creating anonymity and diversity
into the network while diverting malicious traffic to a decoy
machine for unknown attack tactics discovery. Such a multi-
strategy deception can be launch swiftly and effortlessly using
the ADF interface shown in listing 3. Listing 3 depicts a
JSON request for launching deception by the API create-
HoneyNetwrok(). The details of the JSON and the API is
discussed in section III-C. The interface delivers the deception
triggering JSON request to the middleware through REST API.

B. Active Deception Controller

The Active deception controller (ADC) in the framework is
the central orchestrator that handles the end-to-end processing
of the cyber deception from initiation by the interface to
the safe deployment in the network. ADC provides an open
playground that enables prototyping or building advanced
deception planning rapidly and safely using SDN. ADC lever-
ages its facilities by providing a deception API that gives
access to sophisticated cyber deception and OpenFlow man-
agement functions using the OpenDaylight controller. Besides,
ADC incorporates with a decision-making synthesis engine
called solver, that is capable of solving computationally hard
problems using constraint satisfaction solvers (SMT Z3) [11],
ConfigChecker [12], etc. to optimize deception policy actions.
ADC composes the deception triggering by the interface,

1 {"input": {
2 "api": "createHoneyNetwork",
3 "target": "r1",
4 "impact": "high",
5 "k": 2,
6 "l": 3,
7 "trigger": "activate"
8 }
9 }

Listing 3: JSON request to launch deception by k-anonymity
and l-diversity through API createHoneyNetwork().

ensure safe low-level configuration changes, and deploy the
planning into the network. Therefore, ADC makes cyber
deception techniques as a service that users can access without
taking any low-level configuration management headaches yet
mitigate attacks proactively.
Middleware. The middleware translates the high-level de-
ception API to OpdenDaylight API. It incorporates the solver
through REST for solving constraint problems in order to opti-
mize deception planning. Middleware creates a back-and-forth
communication bridge to ADC with the user interface through
ADF API and the SDN network through OpenDaylight API.
We developed the middleware in python and run as a daemon
server along with the ADF controller. The middleware uses a
factory pattern to interpret user deception input and create a
deception event correspondingly, shown in listing 1. Then it
invokes the ADF service, which implements the OpenDaylight
API to launch the deception. Listing 2 shows the OpenDaylight
implementation of the deception deployment.
Solver. The solver in ADC is to optimize constraint problems
to generate a feasible and practically deployable deception
configuration. We designed the solver as a plug-in-play model
in ADF architecture. Therefore, various deception and con-
figuration optimization solution can be added with ADC as
required. We integrated SMT solver to optimize anonymity
and diversity of concealment configuration [2], ConfigChecker
to solve reachability constraints [12]. ADC incorporates with
the solver through middleware via REST API.

C. Active Deception API

ADF provides a comprehensive API for developing complex
and multi-strategy deception plan. The API list is divided into
four classes: a high-level public API for deception planning
known as deception API (ADF API). The other three are low-
level APIs. Sensor API for collecting network behavior to ob-
serve adversary actions. Management API to configure cyber
resources such as switches, links, hosts, services, etc. The con-
straint API calculates risk, overlaps, reachability, availability
while configuring honey networks. Table I shows the low-level
API list, and appendix A describes their functionalities.

The novelty of ADF is the extensible deception API that
can be used to build sophisticated multi-strategy deception
planning in a cost-effective and timely fashion. It eliminates
the challenges of deploying effective cyber deception policies
that require frequent but complex low-level network configu-
ration management. Because of the robust and expressive ADF



TABLE II: ADF Deception API

Name Descriptions

createHoneyNetwork() Dynamically creates a honey network with decoy/shadow hosts and services to analyze adversary for unknown TTP
discover or distort them to delay attack propagation.

reDirect() Redirect traffics to a given destination (can be a decoy or false target) and tunnel the packet to a proxy to generated
trusted response.

reRoute() Change the old path between a source and destination pair to a new path to avoid possible link flooding or other
security measures.

routeMutate() Change the route frequently of active flow(s) to another satisfiable route based on event or time.

hostMutate() Randomizing real src/dst IP addresses to virtual src/dst IP addresses for depletion, so that real IP is used for routing
but end hosts always uses virtual IP to communicate.

migrateService() Create new machine with same services of the current target then migrates all benign traffic to the new machine.

spatioTemporalMutation() Randomize the real IP of given hosts so that each host reach the same destination with a different IP address.
Therefore, the view of the network is different for different host.

createShadow() Creates an identical fingerprint (shadow) of a given host in the honeypot.

createDecoy() Creates a decoy host. If the decoy is specified for a target host without specifying any services, then arbitrary but the
same type of services will be created in the decoy, e.g., an FTP server but with a different vendors.

TABLE III: Deception API: createHoneyNetwork()

Param Descriptions
target The critical resources (hosts, services, links, etc.) to defend.
impact Impact of the critical resources. (low, medium or high).

k To anonymize fingerprinting, k-anonymity places (k − 1)
shadow host with identical fingerprinting of the target host.

l To anonymize configuration, l-diversity places (l − 1) fake
services of same software type but different versions/vendors.

trigger activate: Activate generated honey network.
deactivate: Deactivate and remove honey network.

API, deception management is orchestrated automatically with
minimal overhead. Table II describes a selective list of active
deception API. The ADF API can be used to achieve various
deception goal:

1) Anonymity and Diversity: Anonymity and diversity are
effective concealments to hide the true identity of a host [2].
For instance, by randomizing the IP address of critical re-
sources, agile defenses may fail because skilled attackers
can identify their target by the static fingerprint of that host
(e.g., OS, running services, and their versions). Therefore,
deception by k-anonymization places (k−1) shadow host with
identical fingerprinting of the target host. Moreover, to defeat
the static fingerprint problem, l-diversity places (l− 1) decoy
host with fake services of the same software type but different
versions/vendors.

The anonymity and diversity can easily be achieved using
the createHoneyNetwork() API shown in table III. The API
dynamically creates a honey network with anonymized shadow
hosts and diverse decoy hosts. Listing 3 shows how to invoke
createHoneyNetwork(). The target is the critical resource,
impact defines the risk of being compromised (high means
very critical resources), the k and l are integer value that
defines the anonymity and diversity numbers.

2) Deflection by Redirection: The defender can deflect
adversaries away from real host to a shadow/decoy host or
an inspection environment to let them run in order to discover
unknown attack techniques. ADF provides deflection API such
as reDirect() and reRoute() to serve this purpose. Table IV
shows the APIs. The reDirect() API deflects adversary traffic
to an inspection host based on source IP or source flow ID.

TABLE IV: ADF deflection API: reDirect() and reRoute()

Param Descriptions

re
D

ir
ec

t(
) src Source host IP or flow ID.

dst Destination host IP or flow ID.

to The redirection destination, can be a switch, host, IDS
or even the controller.

re
R

ou
te

() src Source host IP or flow ID.
dst Destination host IP or flow ID.

to A new route consist of switches between src and dst
e.g., s1, s2, s4, s9.

TABLE V: ADF depletion API: spatioTemporalMutation()

Param Descriptions
h Target host list for spatial mutation.
eIP List of ephemeral IP addresses. (Optional)
mi eIP collision rate where i ∈ h
t Lifespan of eIP (temporal period).
how eIP distribution fucntion, can be uniform or random

The reRoute() API is useful to deceive any man in the middle
listener by changing the active route between two hosts.

3) Depletion by Spatio-Temporal Mutation: Depletion
means the consumption of adversaries’ resources by increasing
its computation, confusing towards plausible target identifi-
cation, and delaying in attack propagation. Therefore, the
adversary requires to be more interactive with the system;
eventually reveals its identity and hidden tactics. For instance,
depleting scanning attacks can be quantified as the total
number of probes required to make a hit to the target is higher
than a certain threshold. Spatio-temporal mutation distorts
the adversary views towards the network [15]. It randomizes
the static IP binding to hosts periodically, so that collective
reconnaissance information becomes obsolete after that period.
Besides, the adversary requires to probe again if they make a
further lateral movement. Therefore, Spatio-temporal mutation
either makes the adversary hit the wrong target (decoy/shadow
in ADF) or increase the total number of probes. The spatial
mutation assigns a host multiple ephemeral IP (eIP) addresses
so that each of the neighbors uses a different IP address to
communicate with that host. Table V shows the ADF API
for spatioTemporalMutation(). The parameter h is a list of
target hosts of which IP will be mutated by the given list
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TABLE VI: ADF SMT solver creates honey configuration for
critical host r1 by 2-anonymity and 3-diversity.

Host OS Services
r1 Ubuntu Vsftpd-2.3.5 Apache-2.2.22 MySQL-5.5.54
d1 MacOS CrushFTP 9.3.0 Nginx-1.17.8 Postgresql-10.2
d2 Win7 FileZilla-0.9.58 IIS 7.5 SQL Server-13
sh1 Ubuntu Vsftpd-2.3.5 Apache-2.2.22 MySQL-5.5.54
sh2 MacOS CrushFTP 9.3.0 Nginx-1.17.8 Postgresql-10.2
sh3 Win7 FileZilla-0.9.58 IIS 7.5 SQL Server-13

of ephemeral IP, eIP. If no eIP is given, ADF selects eIP
randomly. Every target host receives a list of eIP; therefore,
all neighbor reaches that target host by distinct eIPs. However,
a target host may have the same eIP for multiple neighbors,
which is defined by the collision rate mi.

IV. CASE STUDY

We extensively evaluated ADF by deploying various goal-
oriented sophisticated deception plans into real networks. We
measure that ADF incurs minimal overhead into the system.

Vagrant.configure("2") do |config|
config.vm.define "shadow_1" do |shadow_1|

shadow_1.vm.box = "hashicorp/precise64"
shadow_1.vm.network "public_network", bridge: "Ethernet",

ip: "10.38.60.2", netmask:"255.255.224.0"
shadow_1.vm.provision "shell", inline: "sudo apt-get -y

install vsftpd=2.3.5"
shadow_1.vm.provision "shell", inline: "sudo apt-get -y

install apache2=2.2.22"
shadow_1.vm.provision "shell", inline: "sudo apt-get -y

install mysql-server=5.5.54"
...

Listing 4: Automated shadow host (sh1) configuration script
in Vagrant.

A. Adversary Distortion by Anonymity and Diversity

We distorted adversary views towards the network by cre-
ating anonymity and diversity for critical resources. Figure 3
shows a network, where there is a probability that the adver-
sary starts scanning to identify critical resource r1. Therefore,
the defender launches deception by distortion using ADF API
createHoneyNetwork(). The API call is shown in listing 3.
ADC incorporates ADF solver with the values of k and l to
optimized the honey network configuration. Table VI portrays
the optimized results. Real host r1 has OS Ubuntu running
on it with three different services. The solver generates two
decoy d1 and d2 for diversity and three shadows sh1, sh2, and

Fig. 4: Nmap scanning finds new host (sh1).

sh3 for anonymity. After that, ADF generates a Vagrant [16]
script shown in listing 4 to create the honey network with
shadows and decoys. The honey network is connected with
proxy p1. ADF takes a few seconds to create honey networks
with different sizes. Figure 6 shows that it takes around 3.7
seconds to create a honey network with twenty shadow and
decoy hosts.

TABLE VII: Ephemeral IP assignment with real IP.

Real IP eIP
u1 10.0.0.1 10.0.0.10 10.0.0.11
u2 10.0.0.2 10.0.0.8 10.0.0.9
r1 10.0.0.3 10.0.0.6 10.0.0.7

Distortion then Discovery. After the deployment of the cre-
ateHoneyNetwork(), adversary probing will yield a distorted
view with many possible targets. A Nmap [17] scanning result
is shown in figure 4, where the adversary finds a possible target
sh1, which is actually a shadow host. Therefore, adversaries
either land in a decoy/shadow or increase probing to find its
real target. Both lead them to engage with the defender, which
makes them get detected.

TABLE VIII: Forwarding entry mapping with real IP and eIP.

u1(10.0.0.1) u2(10.0.0.2) r1(10.0.0.3)
u1(10.0.0.1) - 10.0.0.10 10.0.0.11
u2(10.0.0.2) 10.0.0.8 - 10.0.0.9
r1(10.0.0.3) 10.0.0.7 10.0.0.6 -

B. Adversary Depletion using Spatio-temporal Mutation
The anonymity and diversity distorted the adversary view

towards the network. However, the defender can deplete ad-
versaries by calling the ADF API spatioTemporalMutation().
Assume that the defender wants spatial mutation for user u1,
u2, and critical resource r1. After the mutation API gets called,
ADF assigns eIP for these hosts shown in table VII. Row
2 in table VII means, u1 has real IP (10.0.0.1) and two
ephemeral IP (10.0.0.10) and (10.0.0.11). Table VIII shows
the forwarding rules of these host through eIP. For instance,
Row 2 in table VIII means, u1(10.0.0.1) communicates with
u2(10.0.0.2) and r1(10.0.0.3) through eIP (10.0.0.10) and
(10.0.0.11) respectively instead of its real IP (10.0.0.1).

ADF installs the corresponding flow rules into the SDN
switches shown in figure 5. The flow rules in figure 5a



(a) r1(10.0.0.3) reaches u1(10.0.0.1) through eIP (10.0.0.7) as source IP. Similarly, when u1(10.0.0.1) replies to eIP (10.0.0.7), the
destination changes back to r1(10.0.0.3) from (10.0.0.7).

(b) u1(10.0.0.1) reaches r1(10.0.0.3) through eIP (10.0.0.11) as source IP. Similarly, when r1(10.0.0.3) replies to eIP (10.0.0.11), the
destination changes back to u1(10.0.0.1) from (10.0.0.11).

Fig. 5: Flow rules for Spatio-temporal mutation.

shows, how r1 sends packets to u1 using eIP and gets reply.
For instance, r1(10.0.0.3) reaches u1(10.0.0.1) through eIP
(10.0.0.7) as source IP instead of its real IP (10.0.0.3).
Similarly, when u1(10.0.0.1) replies to eIP (10.0.0.7), the
destination changes back to (10.0.0.3) from (10.0.0.7) and
the replies delivered to the real recipient r1(10.0.0.3). The
rules in figure 5b similarly shows how u1(10.0.0.1) reaches
r1(10.0.0.3). After time interval t, the eIPs in table VII
changes to a new sets of eIPs. ADF incurs limited overhead
into the system for deploying spatial mutation. The cost
depends on the total number of eIP. For a spatial mutation
with fifty eIP, ADF requires 2.7 seconds to install all necessary
flow rules into the network shown in figure 7.

Depletion then Discovery. Following the deployment of
spatioTemporalMutation(), the real IPs for all hosts become
obsolete to communicate with each other. Therefore, adver-
saries need to probe every after t times for reconnaissance.
These raise the total number of probing significantly, which
consumes the adversary resources, makes them less stealthy,
and causes the attack costly. If the adversary directly probes
the real IPs to any of the hosts, ADF marks that host as
a potential scanner and redirect him to a shadow/decoy for
further inspection.

C. Adversary Deflection by redirection

Distortion and depletion make stealthy attackers more inter-
active with the system, which increases their exposure. When
adversaries frequently engage with the system, for instance,
it increases the number of probes to identify targets, and the
ADF sensor observes such unusual activities. Therefore, ADF
can whitelist benign users and mark potential adversaries. ADF
deflects such adversaries by redirection using API reDirect().
The reDirect() API installs the following rules:

1) (src=*, dst=IPr1 , set dst:IPp1 )
2) (src=IPattacker, dst=IPr1 ) → (src=IPp1

, dst=IPd1
)

3) (src=IPd1
, dst=IPp1

) → (src=IPr1 , dst=IPattacker)
The first rule redirects all traffic to the proxy that is direct
probing to critical resource r1, assuming there is a probability
that the source is a potential attacker. Because, after mutation
gets started, no benign user probes r1 directly with its real IP.
Therefore, the proxy redirects the traffic to a decoy to inspect
the adversary activities. The next two rules are to make the
adversary blind follower. For instance, second rules in the p1

Fig. 6: Honey network cre-
ation overhead.

Fig. 7: Spatial mutation over-
head.

keep track of the source IP address while redirecting it to
a decoy (d1). When the decoy replies, p1 reverse the source
IP back to r1 using the third rule. Therefore, the adversaries
assume that they reach their target r1, but the response is
actually coming from a decoy (d1).

V. RELATED WORK

The current state of the art in cyber deception is enriched
due to its effectiveness over existing reactive defense policies.
Different theories and approaches are being used for optimized
and powerful cyber deception planning. Game-theoretic ap-
proaches such as partially observable stochastic games [7],
zero-sum Stackelberg game [18], Bayesian game [19], [20]
provides adversary adaptive deception.

Reinforcement learning such as partially observable markov
decision process (POMDP) [21], [22], game theory with Q-
learning [23], and MDP [24] provide interactive cyber de-
ception planning with the adversary in real-time. Probabilis-
tic logic deception (PLD) [6], satisfiability modulo theories
(SMT) [2], [5] provides optimized deception planning.

Deception framework like [2], [4], [25], [26] provides a
practical implementation for optimizing complex deception
plannings. However, these solutions do not focus on build-
ing a multi-strategy deception goal simultaneously. Software-
defined networking (SDN) has been used for developing many
cyber deception techniques for network securities against
reconnaissance attacks [2], [4], [8], [15], [27]–[29].

VI. CONCLUSION

In this paper, we present an Active Deception Framework
(ADF) that enables an open environment for developing
sophisticated cyber deception applications. ADF facilitates
swift, safe, and effective cyber deception deployment into the



SDN network. ADF leverages an extensive deception API that
can be used to build multi-strategy deception policies. ADF
provides sensors that observe adversary activities in real-time,
helping to interact with adaptive adversaries to make active
deception planning. In addition, the management API helps
to conduct low-level network configurations without human
intervention. ADF is flexible; its API can be extended based
on requirements. We evaluated ADF in the SDN network
showing different case studies by developing various goal-
oriented deception strategies. ADF incurs very little system
overhead while providing proactive defense by deception.
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APPENDIX

A. Active Deception Framework API descriptions



TABLE IX: Active Deception Framework Sensor, Management and Constraint API description.

Name Descriptions

Se
ns

or
s

isHostScanning() If any IP address sending SYN packets grater than the threshold th in a certain time window t, this function generates
a true positive alarm.

isLinkFlooding() If the bandwidth consumed by the flows going to that link l, is greater than the the bandwidth threshold th, this will
generate a true positive alarm.

chekTrafficRate() Calculate the average rate of a specific flow f of type (UDP and ICMP) flows.
checkElephantTCP() Calculate the percentage of large-size TCP traffic from a given flow list ¡f¿ .

getFlowStatistics() To get the complete information about a flow f such as: number of packets matched with f, bytes captured by f,
time window for those packets, traffic type (ICMP, TCP, UDP) etc.

checkNewComers() Calculate the ratio of new IP source addresses from a given flow list ¡f¿ that has not been seen before recently
in a given time window t.

getCriticalLinks() This function returns the critical links may generated in the topology based on the flow data path.
getAllFlowRules() This function retrieves all the flow rules available into a switch s.
findNeighbors() Returns all the neighbor hosts of the given IP address h that connected with the given switch s.
detectBot() If the signature of the examined packets satisfies the condition of bot traffic, return true.

D
ec

ep
tio

n
A

PI

createHoneyNetwork() Dynamically creates a honey network with decoy/shadow hosts and services to analyze adversary for unknown
TTP discover or distort them to delay attack propagation.

reDirect() Redirect traffics to a given destination (can be a decoy or false target) and tunnel the packet to a proxy to
generated trusted response.

reRoute() Change the old path between a source and destination pair to a new path to avoid possible link flooding
or other security measures.

pathMutate() Change the path frequently of active flow(s) to another satisfiable path based on event or time.

ipMutate() Randomizing real src/dst IP addresses to virtual src/dst IP addresses for depletion, so that real IP is used
for routing but end hosts always uses virtual IP to communicate.

migrateService() Create new machine with same services of the current target then migrates all benign traffic to the new machine.

spatialMutation() Randomize the real IP of given hosts so that each host reach the same destination with a different IP address.
Therefore, the view of the network is different for different host.

M
an

ag
em

en
t

A
PI

block() Block any incoming traffic from the given host IP address.
inspect() Inspect header and limited prefix data (application header), can be redirected to given IDS for advance inspection.
throttling() Policing the rate (traffic shaper) of the given traffic.
splitInspect() Divide the traffic and apply deep packet inspection.
priorityForwarding() Use priority queuing to forward traffic (gold, bronze and silver services)
installFlowRule() This function installs a single flow rule into a switch.
installNetworkPath() This function installs a complete data flow(s) path between source and destination host.
sendPacketOut() Forward the packets to the given destination (switch, host or controller).

createTunnel() Creates a tunnel where gateways at both ends only changes the source IP address to new IP address so that man in
the middle get false information about source IP address.

subscribeEvent() Subscribes an event. An event can be a flow trace having type TCP, particular rate or given src-dst pair.
removeAllFlows() Removes all flow rules from a switch.

C
on

st
ra

in
ts

A
PI

getRouteRisk() Calculates the risk of a route based on the probability of each risk get attacked.
overlap() Calculates overlapping links between two route.
isIncludeSwitch() Checks if a particular switch available in a route.
getAvailableBandWidth() Checks the assgined bandwidth of a link.
checkUniqueIP() Checks if two sets of IPs are unique or not.
checkNonRepeateIP() Checks if the given IP is not used by other already assigned IP.
checkSpatialCollision() Checks the collisions in eIP in spatial mutation,
getMinDetectionProb() Calculates the minimum probability to detect an event based on given signature or specification.
getAttackUncertainity() Calculates the probability of a host, link or switch in a route that will be attacked with a given probability.
canReach() Find all reachable sources or destinations to/from a specific source s and destination d.
getShortestPath() Calculates the shortest path source s and destination d.


